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New observations in Gel’fand triplets are studied. An interesting one is vortex phenom-
ena that stem from zero energy solutions of two-dimensional Schr¨odinger equations
with central potentialsV(ρ) ∝ ρr (ρ2 = x2 + y2 andr 6= −2), which are eigenstates
of conjugate spaces of Gel’fand triplets. The zero energy solutions for all the potentials
V(ρ) are shown to have the same structure with infinite degeneracy by making use
of the conformal transformationξα = zα with z= x + iy. The infinite degeneracy is
observed as variety of vortex patterns in real physical phenomena. Some simple vortex
patterns such as vortex lines and vortex lattices are presented. Such a new freedom on
the Gel’fand triplets can be treated in a statistical mechanics. In the theory a new entropy
being different from the so-called Boltzmann entropy appears. Transitions between the
two entropies occur in thermal nonequilibrium phenomena, where energy emissions are
observed.
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1. INTRODUCTION

It is well-known that conjugate spaces of Gel’fand triplets contain eigenstates
with complex energy eigenvalues which describe resonances (Bohm and Gadella,
1989). It is also known that the complex eigenvalues appear in the pairs of com-
plex conjugates, such as,ε ∓ i0 whereε ∈ R and0 ∈ R+ are, respectively, the
energy and the decay width of resonances. The states with the∓ sign, respectively,
represent the resonance decay (−) and formation (+) processes. An example of
such states for the parabolic potential barrierV = −mγ 2x2/2 in one dimension
(1D PPB) has been studied by many authors (Balazs and Voras, 1990; Barton,
1986; Brietet al., 1987; Castagninoet al., 1997; Shimbori, 2000; Shimbori and
Kobayshi, 2000a). It has been shown that the 1D PPB has pure imaginary en-
ergy eigenvalues∓i (n+ 1/2)hγ with n = 0, 1, 2,. . . , and the eigenfunctions
are generalized functions in the conjugate spaceS(R)× of Gel’fand triplet de-
scribed byS(R) ⊂ L2(R) ⊂ S(R)×, whereS(R) andL2(R), respectively, stand
for a Schwartz space and a Lebesgue space (Castagninoet al., 1997; Shimbori,
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2000; Shimbori and Kobayashi, 2000a). This means that all the states are unsta-
ble. We can, however, expect that stationary states will be constructed from those
unstable states because the pairing property of the resonance decay and formation
processes enable us to make states having zero imaginary energy by adding the
two processes with the same probability. One can see an example of such cases in
the two-dimensional parabolic potential barrier (2D PPB), that is, stationary states
describing stationary flows appear in 2D PPB (Shimbori and Kobayashi, 200b).
Actually those solutions are constructed from the pairs of the 1D PPB solutions
with the energy eigenvalues∓i (n+ 1/2) hγ and then they are eigenstates having
exactly zero energy,ε = 0 and0 = 0. As one can easily see, those zero energy so-
lutions are infinitely degenerate, because the number of pairs corresponding to all
positive integersn including 0 is an infinity. It is natural to ask a question whether
this situation is a very peculiar property of 2D PPB. One will also ask another
question how we can observe such infinitely degenerate zero energy solutions in
real physical phenomena. In this article we shall show that this situation is a quite
common property of models described by central potentials such asV(ρ) ∝ ρr for
r 6= −2 in two dimensions, whereρ2 = x2+ y2. And it is also pointed out that the
infinite degeneracy can be observed as the infinite variety of vortex patterns. One
may ask one more question how we can treat such a new freedom arising from
the imaginary parts of energies in many body systems. A statistical mechanics on
Gel’fand triplets will be presented and a new entropy corresponding to the free-
dom of the imaginary part of energies will be studied in the model (Kobayashi and
Shimbori, 2000a,b; Kobayashi and Shimbori, 2001a).

In section 2 the common property of the zero energy solutions for central
potentials is investigated in terms of conformal transformations. In section 3 the
variety of vortex patterns originating from the infinite degeneracy of the zero energy
solutions is discussed. In section 4 a statistical mechanics for the eigenstates with
complex energies is studied and a new entropy for the imaginary energy freedom
is discussed. Prospects of physics on Gel’fand triplets are briefly commented in
section 5.

2. ZERO ENERGY SOLUTIONS OF TWO-DIMENSIONAL
SCHRÖDINGER EQUATIONS WITH CENTRAL POTENTIALS

2.1. Conformal Transformations and Zero Energy Solutions

Let us start from the investigation of the eigenvalue problems of two-
dimensional Schr¨odinger equations with the energy eigenvalueE . The equations
are written as [

− h2

2m
1+ Va(ρ)

]
ψ(x, y) = Eψ(x, y), (1)
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where1 = ∂2/∂x2+ ∂2/∂y2, the central potentials are given by

Va(ρ) = −a2gaρ
2(a−1),

with ρ =
√

x2+ y2, a ∈ R (a 6= 0), andm andga are, respectively, the mass of
the particle and the coupling constant. Note here that the eigenvaluesE should
generally be taken as complex numbers that are allowed in conjugate spaces of
Gel’fand triplets (Bohm and Gadella, 1989). Note also thatVa represents repulsive
potentials for (ga > 0, a > 1) and (ga < 0, a < 1) and attractive potentials for
(ga > 0, a < 1) and (ga < 0, a > 1).

Here we consider the conformal mappings (Kobayashi, in press; Kobayashi
and Shimbori, 2001b)

ζa = za, with z= x + iy. (2)

We use the notationsua andva defined byζa = ua + iva, whereua = ρa cosaϕ
andva = ρa sinaϕ with ϕ = arctan (y/x). In the (ua, va) plane eq. (1) are written
down as

a2ρ2(a−1)/a
a

[
− h2

2m
1a − ga

]
ψ(ua, va) = Eψ(ua, va), (3)

where1a = ∂2/∂u2
a + ∂2/∂v2

a. We can rewrite the equations as[
− h2

2m
1a − ga

]
ψ(ua, va) = a−2Eρ2(1−a)/a

a ψ(ua, va). (4)

Surprisingly the equations become same for all values ofa excepta = 0 when
the energy eigenvalueE have exactly zero value. In other words, forE = 0 the
equations have the same form as that for the free particle with the constant potentials
ga as

[−h22m1a − ga]ψ(ua, va) = 0. (5)

It should be noticed that in the case ofa = 1 where the original potential is a
constantg1 the energy does not need to be zero but can take arbitrary real numbers,
because the right-hand side of (4) has noρ dependence. In thea = 1 case, therefore,
we should takeg1+ E instead ofga. Here let us briefly comment on the conformal
mappingsζa = za. We see that the transformation maps the part of the (x, y) plane
described by 0≤ ρ < ∞, 0 < ϕ < π/|a| on the upper half-plane of the (ua, va)
plane fora > 1 and the lower half-plane fora < −1. Note here that the maps on
the part of the (ua, va) plane with the angleϕa = ϕ − α can be carried out by using
the conformal mappings

ζa(α) = za e−iα. (6)



P1: JQX

International Journal of Theoretical Physics [ijtp] pp994-ijtp-473600 November 11, 2003 15:40 Style file version May 30th, 2002

2268 Kobayashi

In the maps the variables are given by

ua(α) = ua cosα + ua sinα, va(α) = va cosα − ua sinα. (7)

The relationsua(0)= ua andva(0)= va are obvious. Note that the angleα repre-
sents the freedom of the angle of the incoming stationary wave.

It is trivial that the Eq. (5) for all a have the particular solutions

ψ±0 (ua) = Na e±ikaua , ψ±0 (va) = Na e±ikava , for ga > 0 (8)

and

φ±0 (ua) = Ma e±kaua , φ±0 (va) = Ma e±kava , for ga > 0 (9)

whereka =
√

2m|ga|/h andNa andMa are in general complex numbers. General
solutions should be written by the linear combinations of (8) forga > 0 and those
of (9) for ga < 0. Examples for the 2D PPB withga > 0 are presented in Shimbori
and Kobayashi; (2000b). In the following investigations we shall concentrate our
attention on the solutions of (8) that are expressed in terms of plane waves. Here-
after we use the notationsua(α) andva(α) with −π < α ≤ π , which are used in
the conformal mappings of (6). We see that

e±ikaua(α) and e±ikava(α)

are the solutions of (5). (For details, see Kobayashi and Shimbori, 2001b.)

2.2. Infinite Degeneracy of the Zero Energy Solutions

Let us study the degeneracy of the solutions. The origin of the infinite de-
generacy can easily be understood in the case of the 2D PPB (Shimbori and
Kobayashi, 2000b). It is known that energy eigenvalues of 1D PPB are given
by pure imaginary values∓i (n+ 1/2)hγ with n = 0, 1, 2,. . . (Balazs and Voras,
1990; Barton, 1986; Brietet al., 1987; Castagninoet al., 1997; Shimbori, 2000;
Shimbori and Kobayshi, 2000a). From this result we see that the energy eigenval-
ues of the 2D PPB, which are composed of the sum of the 1D PPB eigenvalues
with the opposite signs such as∓i (nx − ny) hγ with nx andny = 0, 1, 2,. . . , in-
clude the zero energy fornx = ny. It is apparent that all the states with the energy
eigenvalues∓i (nx − ny) hγ are infinitely degenerate (Shimbori and Kobayashi,
2000b). This means that all the central potentialsVa(ρ) have the same degener-
acy for the zero energy states. By putting the wave functionf ±(ua; va)ψ±0 (ua)
into (5) where f ±(ua; va) are polynomial functions ofua andva, we obtain the
equation [

1a ± 2ika
∂

∂ua

]
f ±(ua; va) = 0. (10)
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A few examples of the functionsf are given by (Shimbori and Kobayashi,
2000b)

f ±0 (ua; va) = 1,

f ±1 (ua; va) = 4kava,

f ±2 (ua; va) = 4
(
4k2

av2
a + 1± 4ikava

)
. (11)

We can obtain the general forms of the polynomials in the 2D PPB, which are
generally written by the multiple of the polynomials of degreen, H±n (

√
2k2x),

such that

f ±n (u2; v2) = H±n
(√

2k2x
)
· H±n

(√
2k2y

)
, (12)

wherex and y in the right-hand side should be considered as the functions of
u2 andv2 (Shimbori and Kobayashi, 2000b). Since the form of the Eq. (5) is the
same for alla, the solutions can be written by the same polynomial functions that
are given in (12) for the PPB. That is to say, we can obtain the polynomials for
arbitrary a by replacingu2 andv2 with ua andva in (12). Note that the polynomials
H±n (ξ ) with ξ = √mγ /hxare defined by the solutions for the eigenstates withE =
∓i (n+ 1/2)hγ in 1D PPB of the typeV(x) = −mγ 2x2/2 and they are written in
terms of the Hermite polynomialsHn(ξ ) as

H±n (ξ ) = e±inπ/4Hn(e∓iπ/4ξ ). (13)

(For details, see Castagninoet al., 1997; Shimbori, and Kobayashi, 2000a). Note
here that these wave functions in the two dimensions are the generalized func-
tions of the conjugate spacesS(R2)× in Gel’fand triplets, of which nuclear
space is given by Schwarz spaceS(R2) (a linear subspace of Lebesgue space
L2(R2)), such thatS(R2) ⊂ L2(R2) ⊂ S(R2)×. (For details, see Bohm and Gadella,
1989).

The extension to three dimensions can easily be carried out in the cases
with potentials that are separable into the (x, y) plane and thez direction such
that V(x, y, z) = Va(ρ)+ V(z). When the energy eigenvalues of thez direction
are given byEz, we obtain the same equation as (6) forE − Ez = 0. (For the
a = 1 caseg1+ E − Ez > 0 should be taken.) If we take the free motion with the
momentumpz for the z direction,Ez = P2

z /2m should be taken. It is important
that the total energyE is in general not equal to zero in the three dimensions. Note
that wave functions for the separable potentials are written by the product such
asψ(x, y, z) = ψ(x, y)ψ(z). Hereafter we shall not explicitly writeψ(z) in the
wave functions.
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3. VORTICES IN ZERO ENERGY SOLUTIONS

3.1. Hydrodynamical Approach and Vortices

The vortices that are well-known objects in hydrodynamics have been inves-
tigated in many aspects (Batchelor, 1967; Lamb, 1932; Landau and Lifshitz, 1987;
saffman, 1992). In quantum mechanics, hydrodynamical approach was vigorously
investigated in the early stage of the development of quantum mechanics (Bohm,
1952; Bohm and Vigier, 1954; De Broglie, 1930; Dirac, 1951; Kennard, 1928;
Madelung, 1926; Sch¨onberg, 1954; Takabayasi, 1952).

The fundamental properties of vortices in quantum mechanics were exten-
sively examined by Hirschfelder and others (Ghosh, 1982; Hirschfelder, 1977;
Hirschfelderet al., 1974a,b; Hirschfelder and Tang, 1976) and the motions of vor-
tex lines were also studied (Bialynicki-Biruket al., 2000; Schecter and Dubin,
1999).

Let us study vortices that appear in the linear combinations composed of the
solutions with the polynomials of (12). Before going into the details we briefly
describe vortices in quantum mechanical hydrodynamics. The probability density
ρ(t, x, y) and the probability currentj (t, x, y) of a wave functionψ(t, x, y) in
nonrelativistic quantum mechanics are defined by

ρ(t, x, y) ≡ |ψ(t, x, y)|2, (14)

j (t, x, y) ≡ Re[ψ(t, x, y)∗(−i h∇)ψ(t, x, y)]/m. (15)

They satisfy the equation of continuity∂ρ/∂t +∇ · j = 0. Following the analogue
of the hydrodynamical approach (De Broglie, 1930; Dirac, 1951; Kennard, 1928;
Madelung, 1926; Saffman, 1992), the fluid can be represented by the densityρ

and the fluid velocityv. They satisfy Euler’s equation of continuity

∂ρ

∂t
+∇ · (ρv) = 0. (16)

Comparing this equation with the continuity equation, the following definition for
the quantum velocity of the stateψ(t, x, y) is led in the hydrodynamical approach:

v ≡ j (t, x, y)

|ψ(t, x, y)|2 . (17)

Notice thatρ and j in the present cases do not depend on timet . Now it is obvious
that vortices appear at the zero points of the density, that is, the nodal points of the
wave function. At the vortices, of course, the currentJ must not vanish. We should
here remember that the solutions of (5) degenerate infinitely. This fact indicates
that we can construct wave functions having the nodal points at arbitrary positions
in terms of linear combinations of the infinitely degenerate solutions (Kobayashi
and Shimbori, 2001b; Shimbori and Kobayashi, 2000b).
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The strength of vortex is characterized by the circulation0 that is represented
by the integral round a closed contourC encircling the vortex such that

0 =
∮

c
v · ds (18)

and it is quantized as

0 = 2π l h/m, (19)

where the circulation numberl is an integer (Bialynicki-Biruket al., 2000;
Hirschfelder, 1977; Hirschfelderet al., 1974b). It should be stressed that we can
perform the investigation of vortices for all the cases excepta = 0 in the (ua, va)
plane, because fundamental properties of vortices such as the numbers of vortices
in the original plane and the mapped plane and the strengths of vortices do not
change by the conformal mappings.

3.2. Vortex Patterns

Vortex patterns in the (x,y) plane can be obtained by the inverse transforma-
tions of the conformal mappings. Let us here show that vortex lines and vortex
lattices can be constructed from simple linear combinations of the low lying poly-
nomial solutions. And also, the mapped patterns of those lines and lattices are
investigated by the conformal mappings fora = 2 (PPB case;Va ∝ ρ2) and for
a = 1/2 (Coulomb type;Va ∝ ρ−1). In the following discussions the sufficesa of
ua, va, andka are omitted.

Vortex Lines

Let us consider the linear combination of 2◦ one solutions such that

9(u, v) = veiku − ue−ikv, (20)

where the complex constant corresponding to the overall factor of the wave function
is ignored, because the wave function belongs to the conjugate space of Gel’fand
triplet and is not normalizable. This means that the wave function represents a
stationary flow such as in scattering processes. The nodal points of the probability
density|9(u, v)|2 = u2+ v2− 2uvcosk(u+ v) appear at points satisfying the
conditions

u = ±v, cosk(u+ v) = ±1. (21)

We have the nodal points at

u = v = nπ/k, for n = integers. (22)

In the (u, v) plane the positions of vortices can be on a line ofu = v. After some
elementary but tedious calculations, we see that the circulation numbers of vortex
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strengths are given byl = −1 for n = positive integers andl = 1 for n = negative
ones. Note that the origin atu = v = 0 has no vortex. We can directly see the result
by showing the fact that the strength of vortex0 becomes zero for the closed circle
around the origin. We can interpret this result as follows: at the origin there exist a
pair of vortices having the opposite circulation numbers, that is, they, respectively,
belong to the vortex line withl = −1 and that withl = 1. We may say that it is a
vortex dipole.

For the case ofa = 1 (constant potential) we can take asu = x andv = y.
In the case ofa = 2 (PPB) we haveu = x2− y2 andv = 2xy. The relations

for the nodal points are written down as

y = 1√
2+ 1

x, y = ±1

2

√
nπ

(
√

2+ 1)k
, for n = positive integers

y = − 1√
2− 1

x, y = ±1

2

√
|n|π

(
√

2− 1)k
, for n = negative integers.

(23)

We see that a vortex quadrupole composed of two vortex dipole appears at the
origin.

In the case ofa = 1/2 (Coulomb-type), by using the relationsu2− v2 = x
and 2uv = y, we obtain the conditions for the nodal points as follows:

x = 0, y = 2
n2π2

k2
, for n = nonzero integers. (24)

Note that the origin is a singular point, where the source of the potential exists.
Figures fora = 1, 2, and 1/2 are presented in Figs. 1, 2, and 3, which, respec-

tively, represent the vortex pattern for the constant potential, that for the PPB, and
that for the Coulomb type one.

Fig. 1. Positions of vortices forn = ±1,±2,±3 in the
constant potential (a = 1), which are denoted by•.
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Fig. 2. Positions of vortices forn = ±1,±2, and±3 in
the PPB (a = 2), which are denoted by•.

Note here that the differences of the potentials clearly appear not only in the
vortex patterns but the properties of the singularities at the origin as well. Also
notice that the parallel vortex lines are constructed from the linear combinations
of the lowest and the degree 1 polynomials (Kobayashi and Shimbori, 2001b).

Vortex Lattices

Let us consider the linear combination of a stationary wave and a plane wave
such that

9(u, v) = cosku− e−ikv. (25)

The nodal points of the probability density|9(u, v)|2 = 1+ cos2 ku− 2 cos
kucoskv appear at positions satisfying

u = mπ/k, v = nπ/k, (26)

Fig. 3. Positions of vortices forn = 1, 2, and 3 in the
Coulomb type-potential (a = 1/2), which are denoted
by •.
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Fig. 4. Positions of vortices form, n = 0,±1,±2,±3, and±4
in a constant potential (a = 1), which are denoted by• and the
distance between the neighboring lines are taken byπ/k.

where both ofm andn must be even or odd, that is, (−1)m = (−1)n. These condi-
tions produce a vortex lattice presented in Fig. 4 which was suggested in Kobayashi
and Shimbori, (2000a).

In the cases of the PPB (a = 2) and the Coulomb, type (a = 1/2) vortices
appear at the cross points of the following two functions:

x2− y2 = mπ/k, xy= nπ/2k, for the PPB,

x2+ y2 = (m2+ n2)2π4/k4, y = 2mnπ2/k2, for the Coulomb type.

(27)

In the arbitrary values ofa we obtain the circulation numberl = −1 for the all
vortices. Figures fora = 2 and 1/2 are given in Figs. 5 and 6, respectively.

In these arguments we see the following points:

(1) The construction of vortex lattices in experiments seems to be not very
difficult. In fact the vortex lattice of (ii) can be produced from a stationary
wave and a plane wave perpendicular to the stationary wave.

(2) The differences of potentials can be clearly seen from the vortex patterns.
Especially the distances between two neighboring vortices are a good
object to identify the type of the potentials. That is to say, the vortices
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Fig. 5. Positions of vortices for the PPB (a = 2), which are denoted by•.

Fig. 6. Positions of vortices for 0≤ |m|, |n| ≤ 3 in the Coulomb-
type potential (a = 1/2), which are denoted by•, the distance
between the neighboring lines are taken by 2(π/k)2.
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appear in an equal distanceπ/k in the case of the constant potential
(a = 1), whereas the distances become smaller in the regions far from
the origin fora > 1 and larger fora < 1 in comparison with those near the
origin.

(3) The property of the singularity at the origin is also a good object to
identify the potentials.

Although it is at this moment difficult to categorize the present exper-
imental vortex patterns (Batchelor, 1967; Kobayashi, in press; Kobayashi
and Shimbori, 2000a,b; Kobayashi and Shimbori, 2001a,b; Lamb, 1932;
Landau and Lifshitz, 1987 Shimbori and Kobayashi, 2000b), we shall
be able to understand fundamental dynamics of vortex phenomea from
vortex patterns.

It is also noticed that the present results can be applicable not only
to quantum phenomena but also those in classical fluids by changing the
parametersm, h, andga in the original equation.

Uphil now we have not discussed the stability of the vortex lattices.
To investigate the time development of the patterns we have to take ac-
count of the fact that the solutions used here belong to the conjugate spaces
of Gel’fand triplets. In the spaces the eigenstates generally have complex
energy eigenvalues which are expressed by the pairs of complex conju-
gates corresponding to the resonance decay and formation processes. We
see that this pairing property is the origin of the infinite degeneracy of
the solutions and the infinite degeneracy stems from the balance between
the resonance decay and formation processes. This fact seems to indicate
that vortex systems are possibly unstable for perturbations. Actually the
existence of vortex lattices has already been pointed out, and it has also
been noticed that those systems will decay from their edges, where the
balance between the decay and formation processes is broken (Kobayashi
and Shimbori, 2000a). This problem will be discussed in the final section
again.

4. STATISTICAL MECHANICS ON GEL’FAND
TRIPLETS AND ENTROPIES

4.1. Statistical Mechanics on Gel’fand Triplets

We have seen that the imaginary energy freedom in Gel’fand triplets brings
very interesting physical situations, where even stationary states can be included.
Now we should also study what the imaginary energy freedom brings in many
body systems. We, therefore, construct a statistical mechanics in which the
imaginary energy freedom is introduced. Let us start from the construction of
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microcanonical ensemble for states having complex energies which are generally
represented by

εi ji = εi − i γ ji for εi , γ ji ∈ R, (28)

where i , ji ∈ {0, 1, 2,. . .} and the suffixi of ji is needed when there is some
relation between the real and imaginary energy eigenvalues. We consider a simple
case described by a system composed ofN independent particles being in complex
energy states. In this case the total energy of theN-particle system is given by the
sum of energy eigenvalues of each particles such that

E = E − i0, (29)

where

E =
∑

i

εi and 0 =
∑

ji

γ ji . (30)

Note here that the absolute value of the total imaginary energy|0| can be taken as
small as possible because of the pairing property of all complex energy eigenvalues
in Gel’fand triplets. This means that systems having small|0| can be stable enough
to realize a thermal equilibrium which is described in statistical mechanics. Here
we shall investigate simple cases where the real and imaginary energy eigenvalues
are independently determined and then we can take off the suffixi from ji . Such
models will explicitly be presented in cases with parabolic potential barriers. The
basic principle is taken as same as that for the usual statistical mechanics, that is,
principle of equal a priori probability. Then we start from counting the number
of independent combinations of states for a fixed energyE . Since two freedoms
concerning to the real and imaginary parts of energies are independent of each
other, the number of the combination (thermodynamical weight)W(E) is counted
by the product of the numberWR(E) for realizing the real partE and thatWF(0)
for realizing the imaginary part0 such that

W(E) = WR(E)WF(0). (31)

Following the procedure of statistical mechanics, we now see that the entropy
S(E) = kB logW(E) of the system is written in terms of the sum of two entropies
such that

S(E) = SR(E)SF(0), (32)

wherekB is the Boltzmann constant andSR(E) = KB logWR(E) andSF(0) =
KB logWF(0) are, respectively, the Boltzmann entropy and the new entropy in-
duced from the freedom of the imaginary part.

Let us consider equilibrium between two systems which can transfer only
energies with each other. The total energyE = E − i0 given by the sum of those
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for two systemsEI = EI − i0I andEII = EII − i0II is fixed. The number of the
available combinations is written by the product of those for the two systems as

W(E) = WI (EI )WII (EII ), (33)

whereWI (EI ) = WR
I (EI )W

F
I (0I andWII (EII ) = WR

II (EII )W
F
II (0II ). Now we have

the entropy expressed as the sum of four terms

S(E) = SR
I (EI )+ SF

I (0I )+ SR
II (EII )+ SF

II (0II ), (34)

where SR
I (EI ) = kB logWR

I (EI ) and so on. In the procedure maximizing the
entropyS(E) under the constraints thatE = EI + EII and0 = 0I + 0II are fixed,
we obtain two independent relations corresponding to the two constraints such that

∂SR
I (EI )

∂EI
= ∂SR

II (EII )

∂EII
,

∂SF
I (0I )

∂0I
= ∂SF

II (0II )

∂0II
. (35)

The first relation leads the usual temperature but the second one produces a new
quatity which must be same for the two systems in equilibrium. The canonical
distribution for the energyElm = El − i0m is written by

P(Elm) = Z−1 exp (−βREl − βF0m), (36)

whereβR should be chosen as the usual factorβ = (KBT)−1 of canonical distri-
bution,βF denotes the new physical quantity in the equilibriums and the canonical
partition functionZ is given by

Z =
∑

t

∑
m

exp (−βEl − βF0m).

What is the new quantityβF? In independent particle systems wave functions
are written by the product of all constituents such that

9(t, r1, . . . , r N |E) =
N∏

n=1

ψ(t, rn|εn), (37)

where the wave function for one constituent withεn = εn − i γn is generally given
byψ(t, rn|εn) = e−i εnt/hφ(rn). The probability density for9 at the timet is eval-
uated as

ρ(t, r1, . . . , r N |E) = |9(t, r1, . . . , r N |E)|2

= e−20t/h
∏

n

|φ(rn)|2, (38)

where0 =∑n γn. We see that all the states with the same total imaginary energy
0 have the same time dependencee−20t/h. Since the states with complex energy
eigenvalues are unstable, the canonical distributionP(E) must depend on time.



P1: JQX

International Journal of Theoretical Physics [ijtp] pp994-ijtp-473600 November 11, 2003 15:40 Style file version May 30th, 2002

New Aspects in Physics on Gel’fand Triplets 2279

It is natural that the time dependence ofP(E) is same as that of the probability
density, which is determined by the imaginary part0 of the total energyE of the
system. We can specify

βF = 2t/h. (39)

Thus, we can introduce a common time scalet for two systems being in equilibri-
ums. Note that the imaginary partsγ j are expressed by pairs of conjugates, that is,
±|γ j | (∀ j ∈ Z+). This fact means that the total imaginary part0 can possibly be
in microscopic order (quantum size), even if the total real partE is in macroscopic
order.

It is interesting that in the present equilibrium all constituents are governed
by one common time scale. This situation seems to be very interesting to describe
the Universe with one time scale.

The introduction of free energies for the real and imaginary freedoms are
straightforward. We can make grand canonical ensemble, where chemical poten-
tials having the time (common time) dependence are obtained. (For details, see
Kobayashi and Shimbori, 2001a).

4.2. Entropy Transfer From SF to SR

Let us study the entropy transfer fromSF to SR in an adiabatic process
described by a decay of a system that is composed ofN resonances in a 1D PPB+
some ordinary potentials, where the ordinary potentials mean potentials which are
described by Hilbert spaces. In this model, therefore,SF and SR, respectively,
stand for the entropy of the PPB system and that of the ordinary system. Here
we study the process where the decays of the resonance system are absorbed into
the system described by the ordinary potentials. (For details, see Kobayashi and
Shimbori, 2000b; Kobayashi and Shimbori, 2001a.) After the decay processes
are opened att = 0, the entropy of the system being in the PPB is obtained as
(Kobayashi and Shimbori, 2001a)

SF = NkB

[
2γ t

e2γ t

e2γ t − 1
− log(e2γ t − 1)

]
. (40)

For smallt such thatγ t ¿ 1/2 the entropy behaves

SF ' −NkB logτ (41)

whereτ = γ t . This relation gives us

dSF − NkB
dτ

τ
for τ ¿ 1/2. (42)
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Since the total entropy conserves in the adiabatic process, that is, the relation

dS= dSR + dSF = 0 (43)

holds, we obtain the relation

dSR = −dSF. (44)

Note here thatdSR is always positive becausedSF < 0 is kept. In the system
described only by PPBs the temperatureT originated from the freedom of real
energy eigenvalues is zero, that isT = 0, since the system has no real energy
freedom. This means that the temperature must be zero att = 0, that is, just at the
moment when the decay processes are opened. Let us write it as

T(t) = K0τ
δ for τ ¿ 1/2. (45)

where K0 and δ should be positive constants. Since the direct observable in
this process is the real energyER released into the ordinary potentials by the
decay of resonances, we should evaluate the real energy produced in this process.
For the smallt we have

d ER = T(t) dSR = NkBK0τ
δ−1 dτ for τ ¿ 1/2. (46)

Then we can estimate the real energy produced in the process during the short
period from 0 tot (¿ 1/2γ ) as

ER =
∫ γ t

0

d ER

dτ
dτ = NkB

K0

δ
(γ t)δ. (47)

Sinceδ > 0, this process produces a real positive energy. The unknown constants
K0 andδ will depend on the property of the system where the produced energy
is absorbed. We see that the system in PPBs can be the source of the energy
production. It, of course, does not mean the breakdown of the energy conservation
law. In the process where the system is composed in the PPB the real energy
produced in the decay process is stored asSF in the system. This means that the
total produced energy which is evaluated by the integration fromt = 0 to∞must
coincide with the energy consumed in the process for making the initial system.
This integration will derive a relation betweenK0 andδ. An example of energy
production was discussed in Kobayashi and Shimbori (2000b).

5. PROSPECTS OF PHYSICS ON GEL’FAND TRIPLETS

We have shown that Schr¨odinger equations with central potentials in two
dimensions have common zero energy solutions being degenerate infinitely and
those degeneracy are observed as the very rich variety of vortex phenomena. Ac-
tually problems of vortices appear in many aspects of present-day physics such as
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vortex matters (vortex lattices) (Blatter, 1994; Crabtree and Nelson, 1997), vor-
tices in nonneutral plasma (Fineet al., 1995; Ltoet al., 2001; Kiwamoto, 1999,
2000a), and Bose–Einstein gases (Fitzlerlandet al., 2000; Madisonet al., 2000;
Maragoet al., 2000; Mathewset al., 1999; Ramanet al., 1999) and so on. Although
the relations between the present model and those observed processes are not yet
clear, the study of vortex phenomena will open a new prospect in physics based on
Gel’fand triplets. It should be remarked that the huge degeneracy of the zero en-
ergy solutions also provide the huge degeneracy of stable states including vacuum,
because the addition of the zero energy states does not change the total energy at
all. We can understand such systems as follows: Inside of the systems both of the
decay and formation processes of unstable states like resonances always occur with
the same probability and then the total systems can be stable. An example was pre-
sented as two-dimensional lattices connected by stationry flows that are described
by the zero energy solutions (Kobayashi, and Shimbori, 2000). (see Fig. 7.) These
systems have two interesting properties. One is the fact that inside of the systems
every two lattice points are connected by stationary flows which are observable in
quantum mechanics. We may, therefore, call those states composed of observable
quantities semiclassical states. It seems to be very attractive to study mesoscopic
phenomena being in broders between quantum and classical phenomena in terms
of the present scheme. The other point is that, as seen in Fig. 7, such lattices can be
unstable at the edges of the lattices, because the systems touch outer environments
at the edges and then the decay and formation processes are in general no more in

Fig. 7. Two-dimensional lattice connected by stationary flows.
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balance at the edges. Thus the systems will slowly decay at their edges. Actually
we quite often observe such matters decaying from their edges including their
surfaces in our daily life. To investigate those complex matters we have clearly
to understand the new freedom for the imaginary energy eigenvalues which are
quite common observations in Gel’fand triplets. Though statistical mechanics on
Gel’fand triplets presented here show us some ideas such as the new entropy for the
imaginary energy freedom, the theory is still too primitive to investigate realistic
phenomena including slowly decaying or changing matters. it should, however,
be noted that the stable lattices are possibly constructed on closed surfaces like
balls and torus. Provided that a macroscopic stable lattice is made, we can observe
a macroscopic energy emission by breaking its stability by some perturbations.
Such energy emissions without nuclear fusions will possibly be observed even
at ordinary temperatures as very peculiar phenomena which are very hard to be
understood in dynamics on Hilbert spaces. It is also an interesting idea to draw the
birth of the Universe in terms of the collision of two huge stable-lattices, where the
common time scale describing the universe can be naturally introduced as shown
in §4.1. We may say that the investigation on the freedom corresponding to the
imaginary part of energy that is essentially a new object in Gel’fand triplets seems
to be very promising theme in the present-day physics.

Finally we briefly mention other problems which are not touched here. A
supersymmetric theory for scattering can be realized on Gel’fand triplets (Shimbori
and Kobayashi, 2001). It should also be noted that the pure imaginary energy
eigenvalues such as those in PPB possibly provide tachyons in relativistic dynamics
and those tachyons can be states describing Higgs mechanisms for spontaneous
symmetry breaking of vacuum.
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