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New observations in Gel'fand triplets are studied. An interesting one is vortex phenom-
ena that stem from zero energy solutions of two-dimensionald8iaigér equations

with central potentiald/ (p) o p" (02 = x2 4+ y2 andr # —2), which are eigenstates

of conjugate spaces of Gel'fand triplets. The zero energy solutions for all the potentials
V(p) are shown to have the same structure with infinite degeneracy by making use
of the conformal transformatioff* = z* with z = x 4 iy. The infinite degeneracy is
observed as variety of vortex patterns in real physical phenomena. Some simple vortex
patterns such as vortex lines and vortex lattices are presented. Such a new freedom on
the Gel'fand triplets can be treated in a statistical mechanics. In the theory a new entropy
being different from the so-called Boltzmann entropy appears. Transitions between the
two entropies occur in thermal nonequilibrium phenomena, where energy emissions are
observed.

KEY WORDS: Gel'fand triplets; vortex phenomena.

1. INTRODUCTION

Itis well-known that conjugate spaces of Gel'fand triplets contain eigenstates
with complex energy eigenvalues which describe resonances (Bohm and Gadella,
1989). It is also known that the complex eigenvalues appear in the pairs of com-
plex conjugates, such asFiI" wheree € R andTI” € R, are, respectively, the
energy and the decay width of resonances. The states withsgn, respectively,
represent the resonance decay énd formation 4) processes. An example of
such states for the parabolic potential barkiee= —my?x?/2 in one dimension
(1D PPB) has been studied by many authors (Balazs and Voras, 1990; Barton,
1986; Brietet al, 1987; Castagninet al, 1997; Shimbori, 2000; Shimbori and
Kobayshi, 2000a). It has been shown that the 1D PPB has pure imaginary en-
ergy eigenvaluesri(n + 1/2)hy with n =0, 1, 2,..., and the eigenfunctions
are generalized functions in the conjugate sp8¢R)* of Gel'fand triplet de-
scribed byS(R) c £2(R) c S(R)*, whereS(R) and £?(R), respectively, stand
for a Schwartz space and a Lebesgue space (Castaghaip 1997; Shimbori,
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2000; Shimbori and Kobayashi, 2000a). This means that all the states are unsta-
ble. We can, however, expect that stationary states will be constructed from those
unstable states because the pairing property of the resonance decay and formation
processes enable us to make states having zero imaginary energy by adding the
two processes with the same probability. One can see an example of such cases in
the two-dimensional parabolic potential barrier (2D PPB), that is, stationary states
describing stationary flows appear in 2D PPB (Shimbori and Kobayashi, 200b).
Actually those solutions are constructed from the pairs of the 1D PPB solutions
with the energy eigenvaluesi (n + 1/2) hy and then they are eigenstates having
exactly zero energy, = 0 andl’ = 0. As one can easily see, those zero energy so-
lutions are infinitely degenerate, because the number of pairs corresponding to all
positive integers including 0 is an infinity. It is natural to ask a question whether
this situation is a very peculiar property of 2D PPB. One will also ask another
guestion how we can observe such infinitely degenerate zero energy solutions in
real physical phenomena. In this article we shall show that this situation is a quite
common property of models described by central potentials su¢lj@sx o' for

r # —2intwo dimensions, where? = x? + y2. And itis also pointed out that the
infinite degeneracy can be observed as the infinite variety of vortex patterns. One
may ask one more question how we can treat such a new freedom arising from
the imaginary parts of energies in many body systems. A statistical mechanics on
Gel'fand triplets will be presented and a new entropy corresponding to the free-
dom of the imaginary part of energies will be studied in the model (Kobayashi and
Shimbori, 2000a,b; Kobayashi and Shimbori, 2001a).

In section 2 the common property of the zero energy solutions for central
potentials is investigated in terms of conformal transformations. In section 3 the
variety of vortex patterns originating from the infinite degeneracy of the zero energy
solutions is discussed. In seatid a statistical mechanics for the eigenstates with
complex energies is studied and a new entropy for the imaginary energy freedom
is discussed. Prospects of physics on Gel'fand triplets are briefly commented in
section 5.

2. ZERO ENERGY SOLUTIONS OF TWO-DIMENSIONAL
SCHRODINGER EQUATIONS WITH CENTRAL POTENTIALS

2.1. Conformal Transformations and Zero Energy Solutions

Let us start from the investigation of the eigenvalue problems of two-
dimensional Schadinger equations with the energy eigenvafuéhe equations
are written as

2
[—h—A N va(p)} V(. y) = EV (X, Y), (1)

2m
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whereA = 82/9x? + 3°/9y?, the central potentials are given by

Va(p) = —a’gap”® Y,
with p = /X2 + y2,a € R (a # 0), andm andg, are, respectively, the mass of
the particle and the coupling constant. Note here that the eigenwélaksuld
generally be taken as complex numbers that are allowed in conjugate spaces of
Gel'fand triplets (Bohm and Gadella, 1989). Note also thatepresents repulsive
potentials for ¢, > 0,a > 1) and g, < 0,a < 1) and attractive potentials for
(ga> 0,a< 1)and g < 0,a > 1).

Here we consider the conformal mappings (Kobayashi, in press; Kobayashi
and Shimbori, 2001b)

ta=72% with z=x+iy. (2)

We use the notations, andv, defined byz, = u, + iv,, whereu, = p? cosagp
andv, = p@sinag with ¢ = arctan ¢/x). In the (g, va) plane eq. (1) are written
down as

h2
ang(a—l)/a [—%A

a— ga:| ¥ (Ua, Va) = E¥(Ua, Va), 3

whereA, = 3%/9u2 + 32/9v2. We can rewrite the equations as

h2 _ a—2¢ .2(1-a)/a
[—ﬁAa - gai| ¥(Ua, Va) =@ “Ep; ¥(Ua, Va). (4)

Surprisingly the equations become same for all values ekcepta = 0 when

the energy eigenvalué have exactly zero value. In other words, & 0 the
equations have the same form as that for the free particle with the constant potentials
0a s

[—hZZmAa — Ga]¥(Ua, Va) = 0. (%)

It should be noticed that in the case @t 1 where the original potential is a
constang; the energy does not need to be zero but can take arbitrary real numbers,
because the right-hand side of (4) hagmtependence. Inttee= 1 case, therefore,

we should takey; + £ instead ofy,. Here let us briefly comment on the conformal
mappings, = z2. We see that the transformation maps the part ofthg)plane
described by (< p < 00, 0< ¢ < 7/|a| on the upper half-plane of the{, v,)

plane fora > 1 and the lower half-plane fa < —1. Note here that the maps on

the part of the(a,, v,) plane with the angle, = ¢ — o can be carried out by using

the conformal mappings

fale) = 2 €7, (6)
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In the maps the variables are given by
Ua(a) = U4 COSe + Ug Sine, V(o) = V4 COS — Uy Sina. (7

The relationsi; (0) = u, andv,(0) = v, are obvious. Note that the angleepre-
sents the freedom of the angle of the incoming stationary wave.
It is trivial that the Eqg. (5) for all a have the particular solutions

%i(ua) = N, etlkatl, 'ﬁgt(va) = N, etlkave, forga> 0 8)
and
¢3:(Ua) = M, eFate, ¢(:)t(Va) = M, eFaVa, forga> 0 9

wherek, = /2m[da|/h andN, andM, are in general complex numbers. General
solutions should be written by the linear combinations of (8pfor 0 and those

of (9) forga < 0. Examples for the 2D PPB witly, > 0 are presented in Shimbori

and Kobayashi; (2000b). In the following investigations we shall concentrate our
attention on the solutions of (8) that are expressed in terms of plane waves. Here-
after we use the notationg (o) andv,(«) with —m < « < 7, which are used in

the conformal mappings of (6). We see that

etikata@) gnd etikava@)

are the solutions of (5). (For details, see Kobayashi and Shimbori, 2001b.)

2.2. Infinite Degeneracy of the Zero Energy Solutions

Let us study the degeneracy of the solutions. The origin of the infinite de-
generacy can easily be understood in the case of the 2D PPB (Shimbori and
Kobayashi, 2000b). It is known that energy eigenvalues of 1D PPB are given
by pure imaginary valuesi (n + 1/2)hy withn =0, 1, 2,... (Balazs and Voras,
1990; Barton, 1986; Briett al, 1987; Castagninet al., 1997; Shimbori, 2000;
Shimbori and Kobayshi, 2000a). From this result we see that the energy eigenval-
ues of the 2D PPB, which are composed of the sum of the 1D PPB eigenvalues
with the opposite signs such as$(ny — ny) hy with n, andny =0, 1, 2,..., in-
clude the zero energy for, = ny. It is apparent that all the states with the energy
eigenvaluesFi (ny — ny) hy are infinitely degenerate (Shimbori and Kobayashi,
2000b). This means that all the central potentig|éo) have the same degener-
acy for the zero energy states. By putting the wave funcfiéiius,; va)woi(ua)
into (5) wheref*(u,;v,) are polynomial functions ofi, andv,, we obtain the
equation

0
dUg
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A few examples of the functiong are given by (Shimbori and Kobayashi,
2000b)

foi(ua;Va) =1,
fli(ua; Va) = 4KaVa,
f55(Ua; Va) = 4 (4K3VA + 1 £ dikaVa) - (11)

We can obtain the general forms of the polynomials in the 2D PPB, which are
generally written by the multiple of the polynomials of degreeH f(v/2kzx),
such that

£+ (U vp) = HE ( 2k2x> HE <\/2T<2y) , (12)

wherex andy in the right-hand side should be considered as the functions of
u, andv, (Shimbori and Kobayashi, 2000b). Since the form of the Eq. (5) is the
same for all, the solutions can be written by the same polynomial functions that
are given in (12) for the PPB. That is to say, we can obtain the polynomials for
arbitrary a by replacing, andv, with u; andv, in (12). Note that the polynomials
HE (&) withé = ./my /hxare defined by the solutions for the eigenstates &ith
Fi(n+ 1/2)hy in 1D PPB of the typ&/ (x) = —my?x2/2 and they are written in
terms of the Hermite polynomiald, (&) as

HA (§) = 1"/ Hy(e7'7/%). (13)

(For details, see Castagniebal., 1997; Shimbori, and Kobayashi, 2000a). Note
here that these wave functions in the two dimensions are the generalized func-
tions of the conjugate spaceqR?)* in Gel'fand triplets, of which nuclear
space is given by Schwarz spaS€R?) (a linear subspace of Lebesgue space
L2(R?)), suchthaS(R?) c £4(R?) c S(R?)*.(Fordetails, see Bohmand Gadella,
1989).

The extension to three dimensions can easily be carried out in the cases
with potentials that are separable into the ¥) plane and the direction such
thatV (X, Yy, 2) = Va(p) + V(2). When the energy eigenvalues of théirection
are given byE;, we obtain the same equation as (6) fr E, = 0. (For the
a=1casey + £ — E; > 0should be taken.) If we take the free motion with the
momentump, for the z direction, E, = P?/2m should be taken. It is important
that the total energ§ is in general not equal to zero in the three dimensions. Note
that wave functions for the separable potentials are written by the product such
asy(x,Y, 2) = ¥ (X, Y)¥(2). Hereafter we shall not explicitly writg¢’(z) in the
wave functions.
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3. VORTICES IN ZERO ENERGY SOLUTIONS
3.1. Hydrodynamical Approach and Vortices

The vortices that are well-known objects in hydrodynamics have been inves-
tigated in many aspects (Batchelor, 1967; Lamb, 1932; Landau and Lifshitz, 1987;
saffman, 1992). In quantum mechanics, hydrodynamical approach was vigorously
investigated in the early stage of the development of quantum mechanics (Bohm,
1952; Bohm and Vigier, 1954; De Broglie, 1930; Dirac, 1951; Kennard, 1928;
Madelung, 1926; Sariberg, 1954; Takabayasi, 1952).

The fundamental properties of vortices in quantum mechanics were exten-
sively examined by Hirschfelder and others (Ghosh, 1982; Hirschfelder, 1977;
Hirschfelderet al,, 1974a,b; Hirschfelder and Tang, 1976) and the motions of vor-
tex lines were also studied (Bialynicki-Birudt al., 2000; Schecter and Dubin,
1999).

Let us study vortices that appear in the linear combinations composed of the
solutions with the polynomials of (12). Before going into the details we briefly
describe vortices in quantum mechanical hydrodynamics. The probability density
o(t, X, y) and the probability curreni(t, x, y) of a wave functiony (t, x, y) in
nonrelativistic quantum mechanics are defined by

p(t, X, y) = ¥ (t, X, V)%, (14)
it X, y) = Re[y(t, X, y)* (—i hV)y(t, x, y)l/m. (15)

They satisfy the equation of continuidy /dt + V - j = 0. Following the analogue
of the hydrodynamical approach (De Broglie, 1930; Dirac, 1951; Kennard, 1928;
Madelung, 1926; Saffman, 1992), the fluid can be represented by the density
and the fluid velocity. They satisfy Euler's equation of continuity

a

a—f +V-(ov) =0, (16)
Comparing this equation with the continuity equation, the following definition for
the quantum velocity of the statg(t, x, y) is led in the hydrodynamical approach:

P (0255 (17)

[y (L, X, Y)I2°
Notice thato andj in the present cases do not depend on tinNow it is obvious
that vortices appear at the zero points of the density, that is, the nodal points of the
wave function. At the vortices, of course, the currémbust not vanish. We should
here remember that the solutions of (5) degenerate infinitely. This fact indicates
that we can construct wave functions having the nodal points at arbitrary positions
in terms of linear combinations of the infinitely degenerate solutions (Kobayashi
and Shimbori, 2001b; Shimbori and Kobayashi, 2000b).
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The strength of vortex is characterized by the circulalidhat is represented
by the integral round a closed contdlirencircling the vortex such that

= 7§v -ds (18)
C
and it is quantized as
[ = 2xlh/m, (19)

where the circulation numbdr is an integer (Bialynicki-Biruket al, 2000;
Hirschfelder, 1977; Hirschfeldeat al., 1974b). It should be stressed that we can
perform the investigation of vortices for all the cases exeept0 in the {5, Va)

plane, because fundamental properties of vortices such as the numbers of vortices
in the original plane and the mapped plane and the strengths of vortices do not
change by the conformal mappings.

3.2. Vortex Patterns

Vortex patterns in thex(y) plane can be obtained by the inverse transforma-
tions of the conformal mappings. Let us here show that vortex lines and vortex
lattices can be constructed from simple linear combinations of the low lying poly-
nomial solutions. And also, the mapped patterns of those lines and lattices are
investigated by the conformal mappings k= 2 (PPB caseV, « p?) and for
a = 1/2 (Coulomb typeV, « p~2). In the following discussions the suffica®f
Ua, Va, andk, are omitted.

\ortex Lines
Let us consider the linear combination ¢f@e solutions such that
W(u,v) = ve< —ue kv, (20)

where the complex constant corresponding to the overall factor of the wave function
is ignored, because the wave function belongs to the conjugate space of Gel'fand
triplet and is not normalizable. This means that the wave function represents a
stationary flow such as in scattering processes. The nodal points of the probability
density |W(u, v)|?> = u? + v? — 2uvcosk(u + v) appear at points satisfying the
conditions

u==v, cosk(u + V) = +1. (21)
We have the nodal points at
u=v=nx/k, for n= integers (22)

In the (U, v) plane the positions of vortices can be on a lineief v. After some
elementary but tedious calculations, we see that the circulation numbers of vortex
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strengths are given by= —1 forn = positive integers anid= 1 forn = negative
ones. Note that the origin at= v = 0 has no vortex. We can directly see the result
by showing the fact that the strength of vortekecomes zero for the closed circle
around the origin. We can interpret this result as follows: at the origin there exist a
pair of vortices having the opposite circulation numbers, that is, they, respectively,
belong to the vortex line with= —1 and that witH = 1. We may say that it is a
vortex dipole.

For the case od = 1 (constant potential) we can takewas- x andv = .

In the case o& = 2 (PPB) we havel = x> — y? andv = 2xy. The relations
for the nodal points are written down as

1 X = :I:1 i for n = positive integers
Y= v YT (ke B

Inf

(V2 - 1)k’

1 L
= ii for n = negative integers.

N
(23)

We see that a vortex quadrupole composed of two vortex dipole appears at the
origin.

In the case of = 1/2 (Coulomb-type), by using the relation$ — v? = x
and 21v = y, we obtain the conditions for the nodal points as follows:

n?m?
x =0, y = 27, for n = nonzero integers (24)

Note that the origin is a singular point, where the source of the potential exists.

Figuresfora = 1, 2, and 1/2 are presented in Figs. 1, 2, and 3, which, respec-
tively, represent the vortex pattern for the constant potential, that for the PPB, and
that for the Coulomb type one.

-3 Fig. 1. Positions of vortices fon = +1, £2, £3 in the
constant potential(= 1), which are denoted bw.
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Fig. 2. Positions of vortices fon = £1, +£2, and+3 in
the PPB & = 2), which are denoted bw.

Note here that the differences of the potentials clearly appear not only in the
vortex patterns but the properties of the singularities at the origin as well. Also
notice that the parallel vortex lines are constructed from the linear combinations
of the lowest and the degree 1 polynomials (Kobayashi and Shimbori, 2001b).

\ortex Lattices

Let us consider the linear combination of a stationary wave and a plane wave
such that

W(u, v) = cosku — e~k (25)

The nodal points of the probability density(u, v)|?> = 1+ cos ku — 2 cos
kucoskv appear at positions satisfying

u=mmr/K, v = nx/K, (26)

Fig. 3. Positions of vortices fon = 1, 2, and 3 in the
Coulomb type-potentiala(= 1/2), which are denoted
by ..
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m=20

Fig. 4. Positions of vortices fom, n = 0, +1, +2, £3, and+4
in a constant potentiab(= 1), which are denoted by and the
distance between the neighboring lines are takemn ty

where both ofm andn must be even or odd, that is; {)™ = (—1)". These condi-
tions produce a vortex lattice presented in Fig. 4 which was suggested in Kobayashi
and Shimbori, (2000a).

In the cases of the PPB & 2) and the Coulomb, typea(= 1/2) vortices
appear at the cross points of the following two functions:

X% —y? =mmu/k, xy = nm/2k, forthe PPB,
x4+ y? = (M? + n?)2x%/K4, y = 2mnr?/k?,  for the Coulomb type
(27)

In the arbitrary values c& we obtain the circulation numbér= —1 for the all
vortices. Figures foa = 2 and 1/2 are given in Figs. 5 and 6, respectively.
In these arguments we see the following points:

(1) The construction of vortex lattices in experiments seems to be not very
difficult. In fact the vortex lattice of (ii) can be produced from a stationary
wave and a plane wave perpendicular to the stationary wave.

(2) The differences of potentials can be clearly seen from the vortex patterns.
Especially the distances between two neighboring vortices are a good
object to identify the type of the potentials. That is to say, the vortices
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17
LN
‘:‘
Q,:‘

Fig. 5. Positions of vortices for the PPR & 2), which are denoted bw.

Y

Fig. 6. Positions of vortices for & |m|, |n| < 3 in the Coulomb-
type potential & = 1/2), which are denoted by, the distance
between the neighboring lines are taken by /2()>2.
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appear in an equal distaneg k in the case of the constant potential
(a = 1), whereas the distances become smaller in the regions far from
the originfora > 1andlargerfoa < 1in comparison with those nearthe
origin.

The property of the singularity at the origin is also a good object to
identify the potentials.

Althoughiitis at this moment difficult to categorize the present exper-
imental vortex patterns (Batchelor, 1967; Kobayashi, in press; Kobayashi
and Shimbori, 2000a,b; Kobayashi and Shimbori, 2001a,b; Lamb, 1932;
Landau and Lifshitz, 1987 Shimbori and Kobayashi, 2000b), we shall
be able to understand fundamental dynamics of vortex phenomea from
vortex patterns.

It is also noticed that the present results can be applicable not only
to quantum phenomena but also those in classical fluids by changing the
parametersn, h, andgs in the original equation.

Uphil now we have not discussed the stability of the vortex lattices.
To investigate the time development of the patterns we have to take ac-
countof the factthat the solutions used here belong to the conjugate spaces
of Gel'fand triplets. In the spaces the eigenstates generally have complex
energy eigenvalues which are expressed by the pairs of complex conju-
gates corresponding to the resonance decay and formation processes. We
see that this pairing property is the origin of the infinite degeneracy of
the solutions and the infinite degeneracy stems from the balance between
the resonance decay and formation processes. This fact seems to indicate
that vortex systems are possibly unstable for perturbations. Actually the
existence of vortex lattices has already been pointed out, and it has also
been noticed that those systems will decay from their edges, where the
balance between the decay and formation processes is broken (Kobayashi
and Shimbori, 2000a). This problem will be discussed in the final section
again.

4. STATISTICAL MECHANICS ON GELFAND
TRIPLETS AND ENTROPIES

4.1. Statistical Mechanics on Gel'fand Triplets

We have seen that the imaginary energy freedom in Gel'fand triplets brings

very interesting physical situations, where even stationary states can be included.
Now we should also study what the imaginary energy freedom brings in many
body systems. We, therefore, construct a statistical mechanics in which the
imaginary energy freedom is introduced. Let us start from the construction of



New Aspects in Physics on Gel'fand Triplets 2277

microcanonical ensemble for states having complex energies which are generally
represented by

&i ji =€ — i)/ji for €, Vii € R, (28)

wherei, ji € {0, 1, 2,...} and the suffixi of jj is needed when there is some
relation between the real and imaginary energy eigenvalues. We consider a simple
case described by a system composed ofdependent particles being in complex
energy states. In this case the total energy ofNRgarticle system is given by the

sum of energy eigenvalues of each particles such that

E=E—il, (29)

where
E=) & and I'=) y. (30)
i i

Note here that the absolute value of the total imaginary enélgsan be taken as
small as possible because of the pairing property of all complex energy eigenvalues
in Gel'fand triplets. This means that systems having sifialtan be stable enough

to realize a thermal equilibrium which is described in statistical mechanics. Here
we shall investigate simple cases where the real and imaginary energy eigenvalues
are independently determined and then we can take off the sdffixn j;. Such
models will explicitly be presented in cases with parabolic potential barriers. The
basic principle is taken as same as that for the usual statistical mechanics, that is,
principle of equal a priori probability. Then we start from counting the number
of independent combinations of states for a fixed enérggince two freedoms
concerning to the real and imaginary parts of energies are independent of each
other, the number of the combination (thermodynamical weldK#) is counted

by the product of the numbwm(E) for realizing the real parE and thalvvg(r‘)

for realizing the imaginary palit such that

w(E) = WRE)WS (). (31)

Following the procedure of statistical mechanics, we now see that the entropy
S(€) = kg logW(E) of the system is written in terms of the sum of two entropies
such that

s¢) = SHE)SS (), (32)

wherekg is the Boltzmann constant atﬁ?%(E) = Kglog Wm(E) and SS(F) =
Kz log wS (T") are, respectively, the Boltzmann entropy and the new entropy in-
duced from the freedom of the imaginary part.

Let us consider equilibrium between two systems which can transfer only
energies with each other. The total enefgy: E — i T given by the sum of those
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for two systems, = E, —iT"y and &, = E;; — i) is fixed. The number of the
available combinations is written by the product of those for the two systems as

W(E) = Wi (&)W (&), (33)

whereW,(§) = V\/lm(El)V\/,g(D andW, (&) = V\I,?%(E”)V\/“g(l‘”). Now we have
the entropy expressed as the sum of four terms

&) = RE) + ) + SHED) + W), (34)

where SER(EQ = kg IogV\/,m(E|) and so on. In the procedure maximizing the
entropyS(€) under the constraints th&t = E; + E;; andI’ = T') + I}, are fixed,
we obtain two independent relations corresponding to the two constraints such that

o€ _oslE) oSS _ oSt )

0E, oE, ' al| aly
The first relation leads the usual temperature but the second one produces a new
guatity which must be same for the two systems in equilibrium. The canonical
distribution for the energgim, = E — iy, is written by
P(Eim) = 27 exp 7B — p5Tw), (36)

whereﬂ% should be chosen as the usual fagice (KgT) ! of canonical distri-
bution,ﬁg denotes the new physical quantity in the equilibriums and the canonical
partition functionZ is given by

z= Z gexp (—BE — BSTy).

What is the new quantitﬁg? In independent particle systems wave functions
are written by the product of all constituents such that

N
W(t,ry, ..., rnlE) = [ vt ralen), (37)
n=1

where the wave function for one constituent with= en — iy, is generally given
by ¥ (t, rnlen) = €7'4/Ag(r,). The probability density fow at the timet is eval-
uated as

p(ta rlv IR | I'N|(€) = |lp(t! rll L | rN|(€)|2
— e TV TIg(rm)P (38)
n
wherel’ = ) yn. We see that all the states with the same total imaginary energy

I have the same time dependercé/f. Since the states with complex energy
eigenvalues are unstable, the canonical distribuR¢£) must depend on time.
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It is natural that the time dependenceR{€) is same as that of the probability
density, which is determined by the imaginary pgarf the total energy¥ of the
system. We can specify

gS = 2t/h. (39)

Thus, we can introduce a common time sddfier two systems being in equilibri-
ums. Note that the imaginary pastsare expressed by pairs of conjugates, that is,
£yl (Y] € Z4). This fact means that the total imaginary prtan possibly be

in microscopic order (quantum size), even if the total real pastin macroscopic
order.

It is interesting that in the present equilibrium all constituents are governed
by one common time scale. This situation seems to be very interesting to describe
the Universe with one time scale.

The introduction of free energies for the real and imaginary freedoms are
straightforward. We can make grand canonical ensemble, where chemical poten-
tials having the time (common time) dependence are obtained. (For details, see
Kobayashi and Shimbori, 2001a).

4.2. Entropy Transfer From S to SR

Let us study the entropy transfer fro85 to S in an adiabatic process
described by a decay of a system that is composédrelsonances ina 1D PRB
some ordinary potentials, where the ordinary potentials mean potentials which are
described by Hilbert spaces. In this model, theref@®,and S, respectively,
stand for the entropy of the PPB system and that of the ordinary system. Here
we study the process where the decays of the resonance system are absorbed into
the system described by the ordinary potentials. (For details, see Kobayashi and
Shimbori, 2000b; Kobayashi and Shimbori, 2001a.) After the decay processes
are opened at = 0, the entropy of the system being in the PPB is obtained as
(Kobayashi and Shimbori, 2001a)

et
— _ vt _
S8 = Nkg |:2yt 27~ log@ 1)] (40)
For smallt such thaty! « 1/2 the entropy behaves

S8 ~ _Nkg logt (41)

wheret = yt. This relation gives us

ds¥ — Nks & forz < 172 (42)
T
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Since the total entropy conserves in the adiabatic process, that is, the relation
ds=dS +ds’ =0 (43)
holds, we obtain the relation
dh = —ds. (44)

Note here that S is always positive becaustSS < 0 is kept. In the system
described only by PPBs the temperattreriginated from the freedom of real
energy eigenvalues is zero, thatTis= 0, since the system has no real energy
freedom. This means that the temperature must be zére &, that is, just at the
moment when the decay processes are opened. Let us write it as

T(t) = Kor® fort « 1/2. (45)

where Ko and § should be positive constants. Since the direct observable in
this process is the real ener@m released into the ordinary potentials by the
decay of resonances, we should evaluate the real energy produced in this process.
For the smalt we have

dER = T(t)dS? = NkgKor?1dr for v < 1/2. (46)

Then we can estimate the real energy produced in the process during the short
period from O tat (« 1/2y) as

N
R = /ytdidr—NkB O (yt)’. (47)

Sinces > 0, this process produces a real positive energy. The unknown constants
Ko ands will depend on the property of the system where the produced energy
is absorbed. We see that the system in PPBs can be the source of the energy
production. It, of course, does not mean the breakdown of the energy conservation
law. In the process where the system is composed in the PPB the real energy
produced in the decay process is store®&sn the system. This means that the
total produced energy which is evaluated by the integration fren® to co must
coincide with the energy consumed in the process for making the initial system.
This integration will derive a relation betwedty ands. An example of energy
production was discussed in Kobayashi and Shimbori (2000b).

5. PROSPECTS OF PHYSICS ON GELFAND TRIPLETS

We have shown that Sabdinger equations with central potentials in two
dimensions have common zero energy solutions being degenerate infinitely and
those degeneracy are observed as the very rich variety of vortex phenomena. Ac-
tually problems of vortices appear in many aspects of present-day physics such as
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vortex matters (vortex lattices) (Blatter, 1994; Crabtree and Nelson, 1997), vor-
tices in nonneutral plasma (Fir¢ al,, 1995; Ltoet al, 2001; Kiwamoto, 1999,
2000a), and Bose—Einstein gases (Fitzlerlahdl, 2000; Madisoret al.,, 2000;
Maragoet al, 2000; Mathewst al,, 1999; Ramaet al,, 1999) and so on. Although

the relations between the present model and those observed processes are not yet
clear, the study of vortex phenomena will open a new prospect in physics based on
Gel'fand triplets. It should be remarked that the huge degeneracy of the zero en-
ergy solutions also provide the huge degeneracy of stable states including vacuum,
because the addition of the zero energy states does not change the total energy at
all. We can understand such systems as follows: Inside of the systems both of the
decay and formation processes of unstable states like resonances always occur with
the same probability and then the total systems can be stable. An example was pre-
sented as two-dimensional lattices connected by stationry flows that are described
by the zero energy solutions (Kobayashi, and Shimbori, 2000). (see Fig. 7.) These
systems have two interesting properties. One is the fact that inside of the systems
every two lattice points are connected by stationary flows which are observable in
guantum mechanics. We may, therefore, call those states composed of observable
guantities semiclassical states. It seems to be very attractive to study mesoscopic
phenomena being in broders between quantum and classical phenomena in terms
of the present scheme. The other pointis that, as seen in Fig. 7, such lattices can be
unstable at the edges of the lattices, because the systems touch outer environments
at the edges and then the decay and formation processes are in general no more in

Y

Fig. 7. Two-dimensional lattice connected by stationary flows.
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balance at the edges. Thus the systems will slowly decay at their edges. Actually
we quite often observe such matters decaying from their edges including their
surfaces in our daily life. To investigate those complex matters we have clearly
to understand the new freedom for the imaginary energy eigenvalues which are
quite common observations in Gel'fand triplets. Though statistical mechanics on
Gel'fand triplets presented here show us some ideas such as the new entropy for the
imaginary energy freedom, the theory is still too primitive to investigate realistic
phenomena including slowly decaying or changing matters. it should, however,
be noted that the stable lattices are possibly constructed on closed surfaces like
balls and torus. Provided that a macroscopic stable lattice is made, we can observe
a macroscopic energy emission by breaking its stability by some perturbations.
Such energy emissions without nuclear fusions will possibly be observed even
at ordinary temperatures as very peculiar phenomena which are very hard to be
understood in dynamics on Hilbert spaces. Itis also an interesting idea to draw the
birth of the Universe in terms of the collision of two huge stable-lattices, where the
common time scale describing the universe can be naturally introduced as shown
in §4.1. We may say that the investigation on the freedom corresponding to the
imaginary part of energy that is essentially a new object in Gel'fand triplets seems
to be very promising theme in the present-day physics.

Finally we briefly mention other problems which are not touched here. A
supersymmetric theory for scattering can be realized on Gel'fand triplets (Shimbori
and Kobayashi, 2001). It should also be noted that the pure imaginary energy
eigenvalues such asthose in PPB possibly provide tachyons in relativistic dynamics
and those tachyons can be states describing Higgs mechanisms for spontaneous
symmetry breaking of vacuum.
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